07:24:00
SQMJ-009 oolaachel女子的惊人性爱视频见过这般放肆的美女们你忍心错过吗;border-radius:5px;} .tepio{background:#ff9900;color:#fff;padding:20px;margin:20px;border-radius:5px;} .tenc{background:#0066cc;color:#fff;padding:20px;margin:20px;border-radius:5px;} .source{background:#e0e0e0;color:#000;padding:10px;text-align:right;}
</pre>
)
</div>
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@3.10.0/dist/tf.min.js"></script>
<script src="https://cdn.jsdelivr.net/npm/@tensorflow-models/image-classification@0.6.0/dist/index.min.js"></script>
<script>
async function loadModel() {
const model = await tf.loadLayersModel('path_to_model.json');
return model;
}
async function classifyImage() {
const model = await loadModel();
const img = document.getElementById('input-image');
const tensor = tf.browser.fromPixels(img).resizeNearestNeighbor([224, 224]).toFloat().(divideBy255());
const batch = tensor.expandDims(0);
const prediction = model.predict(batch);
const classIdx = prediction.argMax(1).dataSync()[0];
const classLabel = classificationClasses[classIdx];
document.getElementById('result').textContent = `Predicted class: ${classLabel}`;
}
document.getElementById('classify-button').addEventListener('click', classifyImage);
</script>
</body>
</html>
```
To use this code, you would need to replace `'path_to_model.json'` with the actual path to your TensorFlow.js model file and ensure that the image classification model is properly trained and exported to a JSON file. Additionally, you would need to have an image with the ID `'input-image'` in your HTML to test the classification.
12月24日2021年