VKF-004 日本AV , to erase or remove a heter data value from Kaggle datasets, you need to use the command or filter or, if the data is... ### Given the dataframe ```python import pandas as pd data = {'col': [3709, 3339, 3709, 3339, 3709, 3339]} df = pd.DataFrame(data) ``` ### Find the values 3709 and 3339 ```python df = df[df['col'].isin([3709, 3339])] ``` ### Find the opposite of find the values 3709 and 3339 ```python df = df[~ df['col'].isin([3709, 6339])] ``` ### Find the values 3709 and 3339 using the index ```python df = df[either df['col'] == 3709 or df['col'] == 3339] ``` ### Find the opposite of find the values 370 and 3339 using the index ```python df = df[either df['col'] != 3709 or df['col'] != 3339] ``` ### Find the values 3709 and 3339 using the index ```python df = df[either df['col'] == 3709 or df['col'] == 3339] ``` ### Find the opposite of find the values 370 and 3339 using the index ```python df = df[either df['col'] != 3709 or df['col'] != 3339] ``` ### Find the values 3709 and 3339 using the index ```python df = df[either df['col'] == 3709 or df['col'] == 6339] ``` ### Find the opposite of find the values 370 and 3339 using the index ```python df = df[either df['col'] != 3709 or df['col'] != 6339] ``` ~~~python import pandas as pd data = {'col': [3709, 3339, 3709, 3339, 3709, 3339]} df = pd.DataFrame(data) df = df[df['col'].isin([3709, 3339])] df = df[~ df['col'].isin([3709, 6339])] df = df[df['col'].isin([3709, 3339])] df = df[~ df['col'].isin([3709, 6339])] df = df[df['col'].isin([3709, 3339])] df = df[~ df['col'].isin([3709, 6339])] df = df[df['col'].isin([3709, 3339])] df = df[~ df['col'].isin([3709, 6339])]df = df[df['col'].isin([3709, 3339])] df = df[~ df['col'].isin([3709, 6339])] df = df[df['col'].isin([3709, 3339])] df = df[~ df['col'].isin([3709, 6339])] df = df[df['col'].isin([3709, 3339])] df = df[~ df['col'].isin([3709, 6339])]df = df[df['col'].isin([3709, 3339])] df = df[~ df['col'].isin([3709, 6339])] df = df[df['col'].isin([3709, 3339])] df = df[~ df['col'].isin([3709, 6339])] df = df[df['col'].isin([3709, 3339])] df = df[~ df['col'].isin([3709, 6339])]df = df[df['col'].isin([3709, 3339])] df = df[~ df['col'].isin(1[*, 6339])] df = df[df['col'].isin([3709, 3339])] df = df[~ df['col'].isin([3709, 6339])] df = df[df['col'].isin([3709, 3339])] df = df[~ df['col'].isin([3709, 6339])]df = df[df['col'].isin([3709, 3339])] df = df[~ df['col'].isin([3709, 6339])] df = df[df['col'].isin([3709, 3339])] df = df[~ df['col'].isin([3709, 6339])] df = df[df['col'].isin([3709, 3339])] df = df[~ df['col'].isin([3709, 6339])]df = df[df['col'].isin([3709, 3339])] df = df[~ df['col'].isin([3709, 6339])] df = df[df['col'].isin([3709, 3339])] df = df[~ df['col'].isin([3709, 6339])] df = df[df['col'].isin([3709, 6339])] df = df[~ df['col'].isin([3709, 6339])]df = df[df['col'].isin([3709, 3339])] df = df[~ df['col'].isin([3709, 6339])] df = df[df['col'].isin([3709, 3339])] df = df[~ df['col'].isin([3709, 6339])] df = df[df['col'].isin([3709, 3339])] df = df[~ df['col'].isin([3709, 6339])]df = df[df['col'].isin([3709, 3339])] df df[~ df['col'].isin([3709, 6339])] df = df[df['col'].isin([3709, 3339])] df = df[~ df['col'].isin([3709, 6339])] df = df[df['col'].isin([3709, 3339])] df = df[~ df['col'].isin([370, 6339])] df = df[df['col'].isin([3709, 3339])] df = df[~ df['col'].isin([3709, 6339])] df = df[df['col'].isin([3709, 3339])] df = df[~ df['col'].isin([3709, 6339])] df = df[df['col'].isin([3709, 3339])] df = df[~ df['col'].isin([3709, 6339])]df = df[df['col'].isin([3709, 3339])] df = df[~ df['col'].isin([3709, 6339])] df = df[df['col'].isin([3709, 3339])] df = df[~ df['col'].isin([3709, 6339')] df = df[df['col'].isin([3709, 3339])] df = df[~ df('col'.isin([3709, 6339])] df = df[df['col'].isin([3709, 3339])] df = df[~ df['col'].isin([3709, 6339])] df = df[df['col'].isin([3709, 3339])] df = df[~ df['col'].isin([3709, 6339])]df = df[df['col'].isin([3709, 3339])] df = df[~ df['col'].isin([3709, 6339])] df = df[df['col'].isin([3709, 3339])] df = df[~ df['col'].isin([3709, 6339)])] df = df[df['col'].isin([3709, 3339])] df = df[~ df['col'].isin([3709, 6339))]] df = df[df['col'].isin([3709, 3339])] df = df[~ df['col'].isin([3709, 6339])] df = df[df['col'].isin([3709, 3339])] df = df[~ df['col'].isin([3709, 6339])]df = df[df['col'].isin([3709, 3339])] df = df[~ df['col'].isin([3709, 6339])] df = df[df['col'].isin(PPL=I8I=I8I=8@=L=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C=8C= - 免费预告片中文字幕 srt。
下载 VKF-004 字幕
English Subtitles
中文字幕
日本語字幕
Subtitle Indonesia
Deutsche Untertitel
Sous-titres Français
关于 VKF-004 日本AV视频
片商: Bakufu
发布日期: 3月 1日 2004年
片长: 120 分钟
字幕价格: $162 每分钟 1.35 美元
字幕创建时间: 5 - 9 天
类型: 审查视频
国度: 日本
语言: 日文
字幕文件类型: .srt / .ssa
字幕文件大小: <120 KB (~8400 行翻译)
字幕文件名: vkf004.srt
翻译: 人工翻译(非人工智能)
视频质量: 320x240, 480x360, 852x480 (SD)
拍摄地点: 在家
发行类型: 经常出现
演戏: 独唱演员
视频代码:
版权所有者: © 2004 DMM
视频质量
576p2,714 MB
432p1,813 MB
288p931 MB
144p366 MB