











SIVR-396 日本AV 素人史上最纤细筱竹 解禁极限纤细身材中的丰满魅力 - 免费预告片中文字幕 srt。
70 分钟13 次播放热门!
下载 SIVR-396 字幕
English Subtitles
中文字幕
日本語字幕
Subtitle Indonesia
Deutsche Untertitel
Sous-titres Français
篠真有的更多视频
篠真有
OFJE-513 杰作身材精选 最佳时刻 创业周年 史上最强阵容齐聚 美丽曲线 完美身材 顶级模特 珍稀新星
2025年5月23日
SONE-716 ### Machine Learning Methods in Python Python provides a variety of machine learning methods, such as classification, regression, and clustering. The most commonly used library for machine learning in Python is scikit-learn. The steps in machine learning include preparing data and setting up training and test sets. Even when all steps are completed, we might still face issues like overfitting. ### Sample ML Model To implement a machine learning model in Python, consider the following steps: 1. Import necessary libraries: ```python import pandas as pd import numpy as np from sklearn.model_preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression from sklearn.model_selecting import train_test_split from sklearn.metrics import accuracy_score ``` 2. Prepare data: ```python df = pd.read_csv('https://example.com/data.csv') df = df[['A', 'B', 'C']] X = df[['A', 'B']] y = df['C'] ``` 3. Split data into training and test sets: ```python X_train, X_test, y_train, n_test = train_test_split(X, y, test_size=0.2, random_state=42) ``` 4. Normalize data: ```python scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.fit_transform(X_test) ``` 5. Train the model: ```python model = LogisticRegression() model.fit(X_train, y_train) ``` 6. Make predictions: ```python y_pred = model.predict(X_test) ``` 7. Evaluate the model: ```python accuracy = accuracy_score(y_test, y_pred) print("Accuracy: %f" % accuracy) ``` ### Fraud Detection Case ```python from sklearn.model_preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score from sklearn.prevision import train_test_split df = pd.read_csv('https://example.com/data.csv') df = df[['A', 'B', 'C']] X = df[['A',B']] y = df['C'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.fit_transform(X_test) model = LogisticRegression() model.fit(X_train, y_train) y_pred = model.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print("Accuracy: %f" % accuracy) ``` ### Complete Python Code ```python import pandas as pd import numpy as from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score from sklearn.prevision import train_test_split df = pd.read_csv('https://example.com/data.csv') df = df[['A', 'B', 'C']] X = df[['A',B']] y = df['C'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.fit_transform(X_test) model = LogisticRegression() model.fit(X_train, y_train) y_pred = model.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print("Accuracy: %f" % accuracy) ``` ### Explanation Create a logistics regression model using Python and analyze the accuracy of the model. The example uses machine learning techniques to filter fraudulent transactions or payments. The steps include preparing data, creating training and test sets, scaling data, training the model, making predictions, and assessing accuracy. ### Detailed Explanation The model starts by importing necessary libraries and reading data from a URL. It then selects relevant columns for analysis. The data is split into training and test sets using a split ratio of 0.2. Data scaling is applied using a standard scalar. The model is trained using logistic regression on the scaled data. Predictions are made on the test set, and accuracy is evaluated using the accuracy_score function from sklearn.metrics. ### Conclusion Machine learning in Python involves preprocessing, scaling, training, and testing models to predict outcomes. It is essential to evaluate the model's accuracy to ensure reliability. The example demonstrates a basic implementation of logistic regression for fraud detection in financial transactions. ```python import pandas as pd import numpy as from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score from sklearn.prevision import train_test_split df = pd.read_csv('https://example.com/data.csv') df = df[['A', 'B', 'C']] X = df[['A',B']] y = df['C'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) scaler = StandardScaler X_train = scaler.fit_transform(X_train) X_test = scaler.fit_transform(X_test) model = LogisticRegression() model.fit(X_train, y_train) y_pred = model.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print("Accuracy: %f" % accuracy) ```
2025年5月9日
SONE-678 透髓濡れ pólī -padding 巨乳 お姉さん 的 温柔誘惑Situation 篠真有
2025年4月4日
SONE-634 出差期间,面对中年上司的性骚扰,新人社员意外迷失自我
2025年3月7日
SONE-588 温泉不倫旅行中的亲密缠绕istik/colors
2025年2月7日
SONE-538 Exploring the Boundaries of Sensuality: A Special Showcase of Passion and Connection
10 一月 2025
SONE-494 筱真有纯洁粉嫩乳头超[src]满足全罩杯 Full Set
2024年12月6日
FWAY-040 金比率 篠真有
2024年12月6日
关于 SIVR-396 日本AV视频
演员: 篠真有
片商: S1 No.1 Style
发布日期: 2月 23日 2025年
片长: 70 分钟
字幕价格: $105 每分钟 1.50 美元
字幕创建时间: 5 - 9 天
类型: 审查视频
国度: 日本
语言: 日文
字幕文件类型: .srt / .ssa
字幕文件大小: <70 KB (~4900 行翻译)
字幕文件名: sivr00396.srt
翻译: 人工翻译(非人工智能)
人数: 1人
视频质量: 320x240, 480x360, 852x480 (SD), 1280x720 (HD), 1920x1080 (HD)
拍摄地点: 在家
发行类型: 经常出现
演戏: 独唱演员
视频代码:
版权所有者: © 2025 DMM
视频质量
1080p (HD)3,163 MB
720p (HD)2,106 MB
576p1,583 MB
432p1,058 MB
288p543 MB
144p214 MB
常问问题
如何下载完整视频?
然后您将被带到一个结帐页面,您可以在该页面下订单购买视频(多种分辨率可以不同的价格提供)。
这部视频没有字幕。 你能为我创建它们吗?
您需要做的就是为字幕下一个“自定义字幕订单”,我们将在 5 到 9 天内创建并交付字幕。
要订购 SIVR-396 的字幕,请单击此页面顶部的“订购”按钮。
自定义字幕订单如何收费?
默认情况下,我们对每个AV视频标题的字幕收费为每分钟 1.50 美元的固定费率。
但是,我们确实为时长超过 90 分钟和/或包含超过 1 位女演员的电影提供折扣。 同时,由于创建字幕需要付出努力,我们对较短的电影(少于 60 分钟)收取 10% 的费用。
SIVR-396 的定制订单成本为 105.00 美元(70 分钟长视频,每分钟每分钟 1.50 美元美元)。
字幕是什么格式?
交付时的字幕文件将命名为 sivr00396.srt
如何播放带字幕的视频?
为此,我们建议使用 VLC 视频播放器,因为它可以播放多种视频格式并支持字幕 .srt 和 .ass 文件格式。
JAV Subtitled 为您最喜爱的日本AV视频提供最好的字幕和免费预告片。 浏览超过四十万个日本AV标题的集合,并立即下载每天发布的新字幕。
年龄限制:本网站仅面向年满18岁或以上的个人。内容可能包含仅适合成年人的材料,例如图像、视频和文本,不适合未成年人。您进入本网站即表示您已年满18岁,并接受以下条款和条件。本网站的所有者及其关联方不对您使用本网站可能产生的任何损害或法律后果负责,您需自行承担所有相关风险。
JAV Subtitled不在我们的任何服务器上托管任何视频或受版权保护的材料。 我们只是提供字幕服务,我们网站上显示的任何内容要么是公开的、免费的样本/预告片,要么是用户生成的内容。