JAV Subtitled Logo

JAV Subtitled

免费预告片
PARATHD-01548 第 20 部分 - 125 分钟PARATHD-01548 第 19 部分 - 120 分钟PARATHD-01548 第 18 部分 - 115 分钟PARATHD-01548 第 17 部分 - 110 分钟PARATHD-01548 第 16 部分 - 105 分钟PARATHD-01548 第 15 部分 - 100 分钟PARATHD-01548 第 14 部分 - 95 分钟PARATHD-01548 第 13 部分 - 90 分钟PARATHD-01548 第 12 部分 - 85 分钟PARATHD-01548 第 11 部分 - 80 分钟PARATHD-01548 第 10 部分 - 75 分钟PARATHD-01548 第 9 部分 - 70 分钟PARATHD-01548 第 8 部分 - 65 分钟PARATHD-01548 第 7 部分 - 60 分钟PARATHD-01548 第 6 部分 - 55 分钟PARATHD-01548 第 5 部分 - 50 分钟PARATHD-01548 第 4 部分 - 45 分钟PARATHD-01548 第 3 部分 - 40 分钟PARATHD-01548 第 2 部分 - 35 分钟PARATHD-01548 第 1 部分 - 30 分钟

PARATHD-01548 日本AV 家庭中继直播与醉酒女友的亲密时刻 - 免费预告片中文字幕 srt

115 分钟4 次播放


下载 PARATHD-01548 字幕

English Subtitles

中文字幕

日本語字幕

Subtitle Indonesia

Deutsche Untertitel

Sous-titres Français

关于 PARATHD-01548 日本AV视频

演员: 椿かなり, 愛原れの, 仁美まどか, 綾瀬ゆい

片商: Paradise TV

发布日期: 11月 15日 2015年

片长: 115 分钟

字幕价格: $164.45 每分钟 1.43 美元

字幕创建时间: 5 - 9 天

类型: 审查视频

国度: 日本

语言: 日文

字幕文件类型: .srt / .ssa

字幕文件大小: <115 KB (~8050 行翻译)

字幕文件名: parathd01548.srt

翻译: 人工翻译(非人工智能)

人数: 4人

视频质量: 320x240, 480x360, 852x480 (SD), 1280x720 (HD), 1920x1080 (HD)

拍摄地点: 酒吧 / 俱乐部

发行类型: 经常出现

演戏: 团体 (4 演员)

视频代码:

版权所有者: © 2015 DMM

视频质量

1080p (HD)5,196 MB

720p (HD)3,460 MB

576p2,601 MB

432p1,738 MB

288p892 MB

144p351 MB

常问问题

如何下载完整视频?

要下载 PARATHD-01548 的完整视频,请向上滚动到此页面顶部并单击“下载”按钮。

然后您将被带到一个结帐页面,您可以在该页面下订单购买视频(多种分辨率可以不同的价格提供)。

这部视频没有字幕。 你能为我创建它们吗?

我们可以。

您需要做的就是为字幕下一个“自定义字幕订单”,我们将在 5 到 9 天内创建并交付字幕。

要订购 PARATHD-01548 的字幕,请单击此页面顶部的“订购”按钮。

自定义字幕订单如何收费?

如果尚未为视频创建字幕,您可以通过下“自定义字幕订单”请求创建字幕。

默认情况下,我们对每个AV视频标题的字幕收费为每分钟 1.50 美元的固定费率。

但是,我们确实为时长超过 90 分钟和/或包含超过 1 位女演员的电影提供折扣。 同时,由于创建字幕需要付出努力,我们对较短的电影(少于 60 分钟)收取 10% 的费用。

PARATHD-01548 的定制订单成本为 164.45 美元(115 分钟长视频,每分钟每分钟 1.43 美元美元)。

字幕是什么格式?

字幕采用SubRip 文件格式,这是支持最广泛的字幕格式之一。

交付时的字幕文件将命名为 parathd01548.srt

如何播放带字幕的视频?

您将需要一个兼容的视频播放器来播放这部视频和字幕。

为此,我们建议使用 VLC 视频播放器,因为它可以播放多种视频格式并支持字幕 .srt 和 .ass 文件格式。

分享这个视频

更多日本AV视频

PARATHD-01529 Here are some terms and formulas for honing knowledge on matrices, followed by the applications in various fields as per your request. **Titles:** Term and Formula to Master Matrices. **Point-Point:** Following are the terms and formulas for matrices*** What is Matrix:** The matrix is a rectangular array of numbers, which is arranged in rows and columns. These matrices are usually used to solve linear equations. The matrices are generally written in square brackets. *** What is Neat:** It is the numerical value of the matrix, which is usually of a square matrix. It is determined by some specific formulas. For example, 2x2 matrix has a determinant as (ad - bc). *** What is Inverse:** The inverse of a matrix is a matrix that when multiplied with the original matrix gives a identity matrix. If the matrix is non-zero, then the inverse of a matrix can be found. *** What is Eigenvalue:** Eigenvalue is a scalar that is associated with a given linear transformation of an eigenvector. Each eigenvalue always has a corresponding eigenvector. *** What is Linear Transformation:** It is a function from one vector space to another vector which keeps the linearity of the transformed vector. For example, it is a linear transformation from a function to a function. **Here are the formulas to study matrices:**: *** Sum of matrices:** The sum of two matrices is determined by adding up the components of each matrix. For example, [a, b] + [c, d] = [a + c, b + d] *** Product of matrices:** The product of two matrices is determined by multiplying the elements from row one of the first matrix with the components of column two of the second matrix. For example, [a, b] x [c, d] = [ac + bc, ad + bd] *** Determinant of a matrix:** The determinant of a matrix is determined by a special formula. For example, the determinant of matrix [a, b; c, d] is (ad - bc). *** Inverse of a matrix:** The inverse of a matrix is determined by a specific formula. For example, the inverse of matrix [a, b; c, d] is [d, -b; -c, a] / (ad - bc) *** Eigenvalue of a matrix:** The eigenvalue of a matrix is determined by a special formula. For example, the eigenvalues of matrix [a, b, c] are (a - d), (c - d), and (b - d). *** Linear Transformation of a matrix:** The linear transformation of matrix is determined by a special formula. For example, the linear transformation of matrix [a, b, c] is [a + b + c, a - b + c, a + b - c] **Facts:** The matrix generally has three dimensions: row, column, and scalar. A matrix can be utilized to solve linear equations. It can also be used to determine the determinant, inverse, eigenvector, and eigenvalue of a matrix. Following the first segment, let's now turn to the applications of matrices in various fields, ensuring a comprehensive understanding of their significance. **Point-Point:** The important applications of matrices in various fields are as follows:- *** Engineering:** Matrices are widely used in engineering to solve complex problems or equations, such as the simultaneous equation. *** Physics:** Matrices are utilized in physics to calculate the product, determinant, and inverse of a matrix. *** Computer science:** In computer science, matrices are used in coding, software, and even in robotics. *** Graphs:** Matrices are used in graph theory to create a graph, which is then used to solve problems, such as determining the shortest path. *** Statistics:** Matrices are used in statistics to calculate the mean, variance, and standard deviation of a matrix. **Followers:** The matrix is a key concept in mathematics and has applications in various fields. It is needful to understand matrix to correctly solve different problems in different fields. **For:** The formula of several types of matrix is based on the original matrix basis, and their application in different fields is the seventh and eighth section of the matrix. Similarly, the matrix can be used in the fields of physics, computer science, graphs, and statistics as well. **Titles:** Applications of Matrix in Various Fields. As you successfully completed the provided course, you now have a complete knowledge of matrices and it's applications in each field. To make you learn more through these applications and to understand the relation between them, here introduce some book recommendations for you. **Following are the books which you can read to explore matrices:**: *** Linear Algebra and Its Applications.** by D. C. Lay. *** Introduction to Statistics:** by R. M. Swenson. *** Data Science and Robotics:** by S. Kawasaki. *** Physics of Mechanics:** by David Keehan. *** Graph Theory:** by K. Murita. **Ratio:** These books are recommended to get a complete knowledge of matrices and their applications in the respective fields. **Titles:** Books to Study Matrices. </codetable>

11月 15日 2015年

JAV Subtitled

JAV Subtitled 为您最喜爱的日本AV视频提供最好的字幕和免费预告片。 浏览超过四十万个日本AV标题的集合,并立即下载每天发布的新字幕。


© 2019 - 2025 JAV Subtitled. 版权所有. (DMCA • 2257).

年龄限制:本网站仅面向年满18岁或以上的个人。内容可能包含仅适合成年人的材料,例如图像、视频和文本,不适合未成年人。您进入本网站即表示您已年满18岁,并接受以下条款和条件。本网站的所有者及其关联方不对您使用本网站可能产生的任何损害或法律后果负责,您需自行承担所有相关风险。

JAV Subtitled不在我们的任何服务器上托管任何视频或受版权保护的材料。 我们只是提供字幕服务,我们网站上显示的任何内容要么是公开的、免费的样本/预告片,要么是用户生成的内容。