JAV Subtitled Logo

JAV Subtitled

Free Trailer
MMPB-078 Part 20 - 258 minutesMMPB-078 Part 19 - 246 minutesMMPB-078 Part 18 - 234 minutesMMPB-078 Part 17 - 222 minutesMMPB-078 Part 16 - 210 minutesMMPB-078 Part 15 - 198 minutesMMPB-078 Part 14 - 186 minutesMMPB-078 Part 13 - 174 minutesMMPB-078 Part 12 - 162 minutesMMPB-078 Part 11 - 150 minutesMMPB-078 Part 10 - 138 minutesMMPB-078 Part 9 - 126 minutesMMPB-078 Part 8 - 114 minutesMMPB-078 Part 7 - 102 minutesMMPB-078 Part 6 - 90 minutesMMPB-078 Part 5 - 78 minutesMMPB-078 Part 4 - 66 minutesMMPB-078 Part 3 - 54 minutesMMPB-078 Part 2 - 42 minutesMMPB-078 Part 1 - 30 minutes

MMPB-078 JAV Sex Toy Play with an Idol Inspiration Multimedia Model - Free Trailer and English Subtitles srt.

241 mins141 viewsNew!


Download MMPB-078 Subtitles

English Subtitles

中文字幕

日本語字幕

Subtitle Indonesia

Deutsche Untertitel

Sous-titres Français

More Movies by Ayase Kokoro

Ayase Kokoro 綾瀬こころ

Ayase Kokoro

MIZD-454 Overwhelmed by Blissful Ecstasy on the Verge of Release

2 May 2025

MKCK-385 The Ultimate Encyclopedia of World-renowned Spa Bodies: An Exclusive Collection of Therapeutic and Sensual Perfection

25 Apr 2025

MOPP-104 Understanding the Complex Dynamics with a Confident and Observant Childhood Friend, Ayase Kokoro

12 Apr 2025

PPBD-306 Experience Ultimate Pleasure with Delicate Breast Caresses Leading to Ecstatic Release

11 Apr 2025

BMW-330 Exploring Themes of Authority and Power Dynamics in Contemporary Storytelling

28 Mar 2025

MIZD-446 A Gentleman's Dream: Continuouslyecedorred by Charming Uniform Girls in Innocent Youthful Days

28 Mar 2025

JFB-470 5. (a) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (b) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (c) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (d) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (e) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (f) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (g) We shall first find E[N]. We have E[N流入) = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². and into others (a) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (h) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > based) = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (i) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (j) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (k) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (l) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] ;(1** We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (m) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (n) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (o) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (p) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus,

28 Mar 2025

SGKI-051 Popular Actress Ayase Kokoro Takes on a Challenging Endurance Test in a Bold Performance.

24 Mar 2025

MMPB-078 Movie Information

Actresses: Ayase Kokoro 綾瀬こころ, Hono Wakamiya 若宮穂乃, Kokono Terada 寺田ここの, Rika Yumeri ゆめ莉りか ゆめ莉りか, Rin Asahi 朝日りん, Himari Kosaka 小坂ひまり 小坂ひまり, Nana no Saido Kohno 夏向ここの(寺田ここの), Hoshino Natsutsuki 星乃夏月, Ichika Matsumoto 松本いちか

Producer: Momotaro Eizo

Release Date: 3 May, 2025Upcoming

Movie Length: 241 minutes

Custom Order Pricing: $361.5 $1.50 per minute

Subtitles Creation Time: 5 - 9 days

Type: Censored

Movie Country: Japan

Language: Japanese

Subtitle Format: Downloadable .srt / .ssa file

Subtitles File Size: <241 KB (~16870 translated lines)

Subtitle Filename: mmpb00078.srt

Translation: Human Translated (Non A.I.)

Total Casts: 9 actresses

Video Quality & File Size: 320x240, 480x360, 852x480 (SD), 1280x720 (HD), 1920x1080 (HD)

Filming Location: At Home / In Room

Release Type: Regular Appearance

Casting: Group (9 Actresses)

JAV ID:

Copyright Owner: © 2025 DMM

Video Quality & File Size

1080p (HD)10,888 MB

720p (HD)7,252 MB

576p5,451 MB

432p3,642 MB

288p1,870 MB

144p735 MB

More Information

When will the full video be released to the public?

MMPB-078's full video will be released on 3 May, 2025.

Upon release, you will be able to download or stream the entire video in HD or 4k resolution.

There are no subtitles for this movie. Can you create them for me?

Yes we can.

All you'll need to do is place a "Custom Subtitles Order" for subtitles and we will have them created and delivered within 5 - 9 days.

To place an order for MMPB-078's subtitles, click on the 'Order' button at the top of this page.

How do you charge for custom subtitle orders?

If subtitles have not been created for a video, you can request for them to be created by placing a "Custom Subtitles Order".

By default, we charge a flat rate of USD$1.50 per minute for subtitling each JAV title.

However, we do offer discounts for movies that are longer than 90 minutes and/or include more than 1 actress. At the same time, we charge 10% higher for shorter movies (less than 60 minutes) due to the effort it takes to create the subtitles.

The custom order pricing for MMPB-078 is $361.50 at $1.50 per minute (241 minutes long video).

What format are subtitles in?

Subtitles are in SubRip file format, one of the most widely supported subtitle formats.

The subtitle file upon delivery will be named mmpb00078.srt

How do I play this movie with subtitles?

You will need a compatible movie player to play this movie along with subtitles.

For this, we recommend using the VLC movie player as it allows you to play a very large range of video formats and supports subtitles in .srt and .ass file formats.

JAV Subtitled

JAV Subtitled brings you the best SRT English subtitles and free trailers for your favorite Japanese adult movies. Browse through a collection of over 400,000 titles, and instantly download new subtitles released everyday in .srt file formats.


© 2019 - 2025 JAV Subtitled. All Rights Reserved. (DMCA • 2257).

Age restriction: This website is for individuals 18 years of age or older. The content may contain material intended for mature audiences only, such as images, videos, and text that are not suitable for minors. By accessing this website, you acknowledge that you are at least 18 years old and accept the terms and conditions outlined below. The website owner and its affiliates cannot be held responsible for any harm or legal consequences that may arise from your use of this website, and you assume all associated risks.

JAV Subtitled does not host any videos or copyrighted materials on any of our servers. We are solely a subtitling service, and any content displayed on our website are either publicly available, free samples/trailers, or user generated content.