JFB-470 JAV 5. (a) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (b) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (c) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (d) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (e) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (f) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (g) We shall first find E[N]. We have E[N流入) = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². and into others (a) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (h) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > based) = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (i) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (j) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (k) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (l) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] ;(1** We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (m) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (n) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (o) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (p) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, - Free Trailer and English Subtitles srt.
Download JFB-470 Subtitles
English Subtitles
中文字幕
日本語字幕
Subtitle Indonesia
Deutsche Untertitel
Sous-titres Français
JFB-470 Movie Information
Actresses: Nanami Matsumoto 松本菜奈実, Ai Sayama 佐山愛, Rimi Momono 桃野りみ, Yuuri Aise 愛瀬ゆうり 愛瀬ゆうり, Anshi Aikei 安斉愛結, Hikaru Shono 生野ひかる, Ayase Kokoro 綾瀬こころ, Yukari Mochida 持田ゆかり, Honoka Tsuji 辻井ほのか, Mio Hinazuru 雛鶴みお, Yuria Yoshine 吉根ゆりあ, Nene Tanaka 田中ねね, Alice Kisaki 希咲アリス, Rika Tsubaki 椿りか, Akane Sashihara 指原あかね, Yukina Kurokawa 黒川ゆきな, Alice Otsu 乙アリス, Monaka Oguri 小栗もなか, Monaka もなか, Mako Oda 織田真子, Ko Harukazw 春風コウ, Mei Himeno 姫乃めい 姫乃めい, Maria Nagai 永井マリア, Waka Misono 美園和花, Ichika Seta 瀬田一花, Monami Takarada 宝田もなみ, Iori Hane 伊織羽音, Madoka Minami 南円, Yuka Sato 佐藤ゆか, Kanon Hazuki 羽月果音 羽月果音, Rimu Yumino 弓乃りむ 弓乃りむ, Mai Hoshikawa 星川まい, Yuri Honma 本真ゆり, Hono Wakamiya 若宮穂乃, Miyabi Midorikawa 緑川みやび, Shiori Tsukada 塚田詩織, Yua ゆあ, Sakura Mahiru 櫻茉日, Mami Nagase 長瀬麻美, Kuhoku Shika Miyuki 堀北実来(櫻茉日), Rino Yuki 結城りの, Yua Aisaki 逢咲ゆあ, Hana Himesaki 姫咲はな, Satomi Tsubakiori 椿織さとみ, Nao Yuri 優里なお, Nana Anri 安里奈々, Saeko Hiiragi 柊紗栄子, Rena Momozono 桃園怜奈, Ruka Inaba 稲場るか, Sari Kosaka 香坂紗梨, Mami Nagase 長瀬麻美, Asuna Hoshi 星明日菜 星明日菜, Hana Haruna 春菜はな, Tsuyuri Ayase 露梨あやせ, Suzu Aikawa 愛川すず 愛川すず, Mio Kimijima 君島みお, Yua ゆあ, Rina Onkai 音海里奈, Nenne Ui 初愛ねんね, Anna Hanayagi 花柳杏奈, Chizuru Ema 千鶴えま
Producer: Fitch
Release Date: 28 Mar, 2025
Movie Length: 238 minutes
Custom Order Pricing: $357 $1.50 per minute
Subtitles Creation Time: 5 - 9 days
Type: Censored
Movie Country: Japan
Language: Japanese
Subtitle Format: Downloadable .srt / .ssa file
Subtitles File Size: <238 KB (~16660 translated lines)
Subtitle Filename: jfb00470.srt
Translation: Human Translated (Non A.I.)
Total Casts: 61 actresses
Video Quality & File Size: 320x240, 480x360, 852x480 (SD), 1280x720 (HD), 1920x1080 (HD)
Filming Location: At Home / In Room
Release Type: Regular Appearance
Casting: Group (61 Actresses)
JAV ID:
Copyright Owner: © 2025 DMM
Video Quality & File Size
1080p (HD)10,753 MB
720p (HD)7,161 MB
576p5,384 MB
432p3,596 MB
288p1,847 MB
144p726 MB



