JFB-470 JAV 5. (a) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (b) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (c) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (d) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (e) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (f) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (g) We shall first find E[N]. We have E[N流入) = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². and into others (a) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (h) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > based) = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (i) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (j) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (k) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (l) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] ;(1** We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (m) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (n) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (o) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (p) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, - Free Trailer and English Subtitles srt.
Download JFB-470 Subtitles
English Subtitles
中文字幕
日本語字幕
Subtitle Indonesia
Deutsche Untertitel
Sous-titres Français
JFB-470 Movie Information
Actresses: Honoka Tsuji 辻井ほのか, Madoka Minami 南円, Mako Oda 織田真子, Nenne Ui 初愛ねんね, Mio Hinazuru 雛鶴みお, Monaka もなか, Ichika Seta 瀬田一花, Rino Yuki 結城りの, Ruka Inaba 稲場るか, Shiori Tsukada 塚田詩織, Yuria Yoshine 吉根ゆりあ, Maria Nagai 永井マリア, Monami Takarada 宝田もなみ, Sakura Mahiru 櫻茉日, Yukina Kurokawa 黒川ゆきな, Mami Nagase 長瀬麻美, Ko Harukazw 春風コウ, Anshi Aikei 安斉愛結, Mio Kimijima 君島みお, Ayase Kokoro 綾瀬こころ, Hikaru Shono 生野ひかる, Satomi Tsubakiori 椿織さとみ, Asuna Hoshi 星明日菜 星明日菜, Mami Nagase 長瀬麻美, Hono Wakamiya 若宮穂乃, Iori Hane 伊織羽音, Chizuru Ema 千鶴えま, Ai Sayama 佐山愛, Rimu Yumino 弓乃りむ 弓乃りむ, Rina Onkai 音海里奈, Yua Aisaki 逢咲ゆあ, Waka Misono 美園和花, Rimi Momono 桃野りみ, Miyabi Midorikawa 緑川みやび, Nene Tanaka 田中ねね, Yuuri Aise 愛瀬ゆうり 愛瀬ゆうり, Nanami Matsumoto 松本菜奈実, Monaka Oguri 小栗もなか, Rena Momozono 桃園怜奈, Yuri Honma 本真ゆり, Yua ゆあ, Yukari Mochida 持田ゆかり, Akane Sashihara 指原あかね, Nao Yuri 優里なお, Rika Tsubaki 椿りか, Yua ゆあ, Mai Hoshikawa 星川まい, Yuka Sato 佐藤ゆか, Anna Hanayagi 花柳杏奈, Kuhoku Shika Miyuki 堀北実来(櫻茉日), Hana Himesaki 姫咲はな, Mei Himeno 姫乃めい 姫乃めい, Nana Anri 安里奈々, Alice Kisaki 希咲アリス, Kanon Hazuki 羽月果音 羽月果音, Sari Kosaka 香坂紗梨, Suzu Aikawa 愛川すず 愛川すず, Hana Haruna 春菜はな, Tsuyuri Ayase 露梨あやせ, Saeko Hiiragi 柊紗栄子, Alice Otsu 乙アリス
Producer: Fitch
Release Date: 28 Mar, 2025
Movie Length: 238 minutes
Custom Order Pricing: $357 $1.50 per minute
Subtitles Creation Time: 5 - 9 days
Type: Censored
Movie Country: Japan
Language: Japanese
Subtitle Format: Downloadable .srt / .ssa file
Subtitles File Size: <238 KB (~16660 translated lines)
Subtitle Filename: jfb00470.srt
Translation: Human Translated (Non A.I.)
Total Casts: 61 actresses
Video Quality & File Size: 320x240, 480x360, 852x480 (SD), 1280x720 (HD), 1920x1080 (HD)
Filming Location: At Home / In Room
Release Type: Regular Appearance
Casting: Group (61 Actresses)
JAV ID:
Copyright Owner: © 2025 DMM
Video Quality & File Size
1080p (HD)10,753 MB
720p (HD)7,161 MB
576p5,384 MB
432p3,596 MB
288p1,847 MB
144p726 MB