JAV Subtitled Logo

JAV Subtitled

Free Trailer
FPRE-142 Part 20 - 182 minutesFPRE-142 Part 19 - 174 minutesFPRE-142 Part 18 - 166 minutesFPRE-142 Part 17 - 158 minutesFPRE-142 Part 16 - 150 minutesFPRE-142 Part 15 - 142 minutesFPRE-142 Part 14 - 134 minutesFPRE-142 Part 13 - 126 minutesFPRE-142 Part 12 - 118 minutesFPRE-142 Part 11 - 110 minutesFPRE-142 Part 10 - 102 minutesFPRE-142 Part 9 - 94 minutesFPRE-142 Part 8 - 86 minutesFPRE-142 Part 7 - 78 minutesFPRE-142 Part 6 - 70 minutesFPRE-142 Part 5 - 62 minutesFPRE-142 Part 4 - 54 minutesFPRE-142 Part 3 - 46 minutesFPRE-142 Part 2 - 38 minutesFPRE-142 Part 1 - 30 minutes

FPRE-142 JAV Silent Submission: Moanami's Whispering Sighs and Mucosal Sounds in Solitude - Free Trailer and English Subtitles srt.

160 mins8 views


Download FPRE-142 Subtitles

English Subtitles

中文字幕

日本語字幕

Subtitle Indonesia

Deutsche Untertitel

Sous-titres Français

More Movies by Monami Takarada

Monami Takarada 宝田もなみ

Monami Takarada

MKCK-385 The Ultimate Encyclopedia of World-renowned Spa Bodies: An Exclusive Collection of Therapeutic and Sensual Perfection

25 Apr 2025

CJOB-172 A submissive man pleasure-drowned multiple times by competitive nymphomaniacs in a cumshot rotation

18 Apr 2025

MIZD-449 Exploring Narrative Themes in Complex Storytelling: A Respectful Analysis

11 Apr 2025

PPBD-306 Experience Ultimate Pleasure with Delicate Breast Caresses Leading to Ecstatic Release

11 Apr 2025

KTRA-710 Graceful Portrayal of Youthful Beauty and Charm in Artistic Expression

5 Apr 2025

MMPB-074 Unexpected Cumshot: This Is the Confidential Behind-the-Scenes Men's Massage Parlor

29 Mar 2025

NIMA-044 Live-Action Adaptation Faces Delays as Actress Takaramono Manami Announces Pregnancy

28 Mar 2025

JFB-470 5. (a) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (b) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (c) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (d) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (e) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (f) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (g) We shall first find E[N]. We have E[N流入) = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². and into others (a) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (h) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > based) = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (i) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (j) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (k) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (l) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] ;(1** We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (m) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (n) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (o) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (p) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus,

28 Mar 2025

FPRE-142 Movie Information

Actresses: Monami Takarada 宝田もなみ

Producer: Fitch

Release Date: 31 Jan, 2025

Movie Length: 160 minutes

Custom Order Pricing: $216 $1.35 per minute

Subtitles Creation Time: 5 - 9 days

Type: Censored

Movie Country: Japan

Language: Japanese

Subtitle Format: Downloadable .srt / .ssa file

Subtitles File Size: <160 KB (~11200 translated lines)

Subtitle Filename: fpre00142.srt

Translation: Human Translated (Non A.I.)

Total Casts: 1 actress

Video Quality & File Size: 320x240, 480x360, 852x480 (SD), 1280x720 (HD), 1920x1080 (HD)

Filming Location: At Home / In Room

Release Type: Regular Appearance

Casting: Solo Actress

JAV ID:

Copyright Owner: © 2025 DMM

Video Quality & File Size

1080p (HD)7,229 MB

720p (HD)4,814 MB

576p3,619 MB

432p2,418 MB

288p1,242 MB

144p488 MB

More Information

How do I download the full video?

To download the full video for FPRE-142, scroll up to the top of this page and click on the 'Download' button.

You will then be brought to a checkout page where you can place your order for the video (multiple resolutions are available at different pricings).

There are no subtitles for this movie. Can you create them for me?

Yes we can.

All you'll need to do is place a "Custom Subtitles Order" for subtitles and we will have them created and delivered within 5 - 9 days.

To place an order for FPRE-142's subtitles, click on the 'Order' button at the top of this page.

How do you charge for custom subtitle orders?

If subtitles have not been created for a video, you can request for them to be created by placing a "Custom Subtitles Order".

By default, we charge a flat rate of USD$1.50 per minute for subtitling each JAV title.

However, we do offer discounts for movies that are longer than 90 minutes and/or include more than 1 actress. At the same time, we charge 10% higher for shorter movies (less than 60 minutes) due to the effort it takes to create the subtitles.

The custom order pricing for FPRE-142 is $216.00 at $1.35 per minute (160 minutes long video).

What format are subtitles in?

Subtitles are in SubRip file format, one of the most widely supported subtitle formats.

The subtitle file upon delivery will be named fpre00142.srt

How do I play this movie with subtitles?

You will need a compatible movie player to play this movie along with subtitles.

For this, we recommend using the VLC movie player as it allows you to play a very large range of video formats and supports subtitles in .srt and .ass file formats.

JAV Subtitled

JAV Subtitled brings you the best SRT English subtitles and free trailers for your favorite Japanese adult movies. Browse through a collection of over 400,000 titles, and instantly download new subtitles released everyday in .srt file formats.


© 2019 - 2025 JAV Subtitled. All Rights Reserved. (DMCA • 2257).

Age restriction: This website is for individuals 18 years of age or older. The content may contain material intended for mature audiences only, such as images, videos, and text that are not suitable for minors. By accessing this website, you acknowledge that you are at least 18 years old and accept the terms and conditions outlined below. The website owner and its affiliates cannot be held responsible for any harm or legal consequences that may arise from your use of this website, and you assume all associated risks.

JAV Subtitled does not host any videos or copyrighted materials on any of our servers. We are solely a subtitling service, and any content displayed on our website are either publicly available, free samples/trailers, or user generated content.