JAV Subtitled Logo

JAV Subtitled

Kategori Variasi Video Dewasa Jepang (Halaman 344)

03:11:00

NHDTA-477 Judul yang sesuai dan terpercaya dalam bahasa Indonesia adalah sangat penting. Mohon berikan konten yang lebih sesuai untuk sayaFullPath:UsersusernameDocuments<|endoftext|>Find the value of the expression [sum_{n = 1}^infty frac{1}{n(n + 2)}.] To find the value of the infinite series (sum_{n=1}^infty frac{1}{n(n+2)}), we start by using partial fraction decomposition to simplify the general term (frac{1}{n(n+2)}). We can write: [ frac{1}{n(n+2)} = frac{A}{n} + frac{B}{n+2} ] Multiplying both sides by (n(n+2)), we get: [ 1 = A(n+2) + Bn ] Expanding and combining like terms, we have: [ 1 = An + 2A + Bn = (A + B)n + 2A ] For the equation to hold for all (n), the coefficients of (n) and the constant term must be equal on both sides. This gives us the system of equations: [ A + B = 0 quad ext{and} quad 2A = 1 ] Solving these equations, we get: [ A = frac{1}{2} quad ext{and} quad B = -frac{1}{2} ] So, we can rewrite the term as: [ frac{1}{n(n+2)} = frac{1/2}{n} - frac{1/2}{n+2} = frac{1}{2} left( frac{1}{n} - frac{1}{n+2} ight) ] Now, we can write the series as: [ sum_{n=1}^infty frac{1}{n(n+2)} = frac{1}{2} sum_{n=1}^infty left( frac{1}{n} - frac{1}{n+2} ight) ] This is a telescoping series. Let's write out the first few terms to see the cancellation: [ frac{1}{2} left( left( frac{1}{1} - frac{1}{3} ight) + left( frac{1}{2} - frac{1}{4} ight) + left( frac{1}{3} - frac{1}{5} ight) + left( frac{1}{4} - frac{1}{6} ight) + cdots ight) ] Notice that most terms cancel out, leaving us with: [ frac{1}{2} left( 1 + frac{1}{2} ight) = frac{1}{2} left( frac{3}{2} ight) = frac{3}{4} ] Therefore, the value of the series is: [ oxed{frac{3}{4}} ]Fullpath: C:UsersusernameDocumentsmath problemsseries problem.txt On the island of Castor, there are 60 chess players. A quarter of the island's chess players have never lost to an AI. How many people on the island have lost to a computer, at least once? To determine how many people on the island of Castor have lost to a computer at least once, we start by finding out how many players have never lost to an AI. Given that there are 60 chess players on the island and a quarter of them have never lost to an AI, we calculate the number of players who have never lost to an AI as follows: [ frac{1}{4} imes 60 = 15 ] This means that 15 players have never lost to an AI. Therefore, the number of players who have lost to a computer at least once is the total number of players minus the number of players who have never lost to an AI: [ 60 - 15 = 45 ] Thus, the number of people on the island who have lost to a computer at least once is (oxed{45}).

19 Jan 2014

JAV Subtitled

JAV Subtitled memberi Anda subtitle Indonesia SRT terbaik dan cuplikan gratis untuk film dewasa Jepang favorit Anda. Jelajahi koleksi lebih dari 400.000 judul video dewasa Jepang, dan unduh subtitle baru yang dirilis setiap hari secara instan.


© 2019 - 2025 JAV Subtitled. Seluruh Hak Cipta. (DMCA • 2257).

Situs web ini ditujukan untuk individu yang berusia 18 tahun atau lebih tua. Konten mungkin berisi materi yang hanya ditujukan untuk penonton dewasa, seperti gambar, video, dan teks yang tidak cocok untuk anak-anak. Dengan mengakses situs web ini, Anda mengakui bahwa Anda setidaknya berusia 18 tahun dan menerima syarat dan ketentuan yang diuraikan di bawah ini. Pemilik situs web dan afiliasinya tidak bertanggung jawab atas segala kerugian atau konsekuensi hukum yang mungkin timbul dari penggunaan situs web ini, dan Anda mengasumsikan semua risiko yang terkait.

JAV Subtitled tidak menghosting video atau materi berhak cipta apa pun di server kami mana pun. Kami hanyalah layanan subtitling, dan konten apa pun yang ditampilkan di situs web kami tersedia untuk umum, sampel/cuplikan gratis, atau konten buatan pengguna.