JKSR-264 . Let the heights measured be the following: 0.920, 1.076, 1.200, 0.980, 1.078, 1.200, 1.010, 1.700, 1.200, 0.980, 0.980, 1.076, 0.920, 1.076, 1.200, 1.200, 0.980, 1.076, 1.200, 0.980, 1.200, 0.920, 0.920, 1.200, 0.980, 0.920, 1.200, 0.980, 1.200, 0.980, 1.200, 0.980, 1.200, 0.980, 1.200, 0.980, 1.200, 0.980, 1.200, 0.980, 1.200, 0.980, 1.200, 0.980, 1.200, 0.980, 1.200, 0.980, 1.200, 0.980, 1.200, 0.980, 1.200, 0.980, 1.200, 0.980, 1.200, 0.980, 1.200, 0.980, 1.200, 0.980, 1.200, 0.980, 1.200, 0.980, 1.200, 0.980, 1.200, 0.980, 1.200, 0.980, 1.200, 0.980, 1.200, 0.980, 1.200, 0.980, 1.200, 0.980, 1.200, 0.980, 1.200, 0.980, 1.200, 0.980, 1.200, 0.980, 1.200, 0.980, 1.1. The standard deviation of the heights measured is 0.194. 2. The mean of the heights measured is 1.060. 3. The uncorrect standard deviation of the heights measured is 0.199. 4. The standard deviation of the heights measured is 0.199.
To show that the standard deviation of the heights measured is 0.299, we'll calculate the standard deviation step by step. The standard deviation is a measure of how spread out the numbers are from the mean.
**Step 1: Calculate the mean of the heights measured.**
[ ext{Mean} = frac{0.920 + 1.076 + 1.200 + 0.980 + 1.078 + 1.200 + 1.010 + 1.700 + 1.200 + 0.920 + 1.076 + 1.200 + 0.980 + 1.076 + 1.200 + 1.200 + 0.980 + 1.076 + 1.200 + 0.980 + 1.200 + 0.920 + 0.920 + 1.200 + 0.980 + 0.920 + 1.200 + 0.980 + 1.200 + 0.980 + 1.200 + 0.980 + 1.200 + 0.980 + 1.200 + 0.980 + 1.200 + 0.980 + 1.200 + 0.980 + 1.200 + 0.980 + 1.200 + 0.980 + 1.200 + 0.980 + 1.200 + 0.980 + 1.200 + 0.980 + 1.200 + 0.980 + 1.200 + 0.980 + 1.200 + 0.980 + 1.200 + 0.980 + 1.200 + 0.980 + 1.200 + 0.980 + 1.200 + 0.980 + 1.200 + 0.980 + 1.200 + 0.980 + 1.200 + 0.980 + 1.200 + 0.980 + 1.200 + 0.980 + 1.200 + 0.980 + 1.200 + 0.980 + 1.200 + 0.980 + 1.200 + 0.980 + 1.200 + 0.980 + 1.200 + 0.980 + 1.200 + 0.980 + 1.200 + 0.980 + 1.200 + 0.980 + 1.200 + 0.980 + 1.200 + 0.980 + 1.200 + 0.980 + 1.200 + 0.980 + 1.200 + 0.980 + 1.200 + 0.980 + 1.210 + 0.980 + 1.200 + 0.980 + 1.200 + 0.980 + 1.200 + 0.980 + 1.200 + 0.980 + 1.200 + 0.980 + 1.200 + 0.980 + 1.200 + 0.980 + 1.200 + 0.980 + 1.200 + 0.980 + 1.200 + 0.980 + 1.200 + 0.980 + 1.200 + 0.980 + 1.200 + 0.980 + 1.200 + 0.980 + 1.200 + 0.980 + 1.200 + 0.980 + 1.200 + 0.980 + 1.200 + 0. of the numbers measured is 0.194. 2. The mean of the heights measured is 1.060. 3. The uncorrect standard deviation of the heights measured is 0.199. 4. The standard deviation of the heights measured is 0.199.**
So, the standard deviation of the heights measured is 0.199.
**Conclusion:**
The standard deviation of the heights measured is 0.199.
25 Jan 2017