01:44:00
HGJ-001 data from the There are other tools that can be used to extract data from a web page such as BeautifulSoup or Requests extensions etc. Used to extract data from a web page such as BeautifulSoup or Requests extensions etc. Answered Part 1 Python code
# your code here
import numpy as np
import matplotlib.pyplot as plt
### Create an array of 1000 values such that it is each of the 100 values is repeated 10 times
repetitionValue = 100
data = np.repeat(np.arange(repetitionValue), repetitionValue) # Use the values 0 to 99
array= np.array(data)
# Then, look at the mantitude of the individual of a site **Find the average probability that a low value is selected
# Below is the frequency that each value is selected**
print(array)
items_per_bin = []
for i in range(100) :
items_per_bin.append(np.sum(1 == np.array))
print(np.sum(1 == np.array))
# To extend the digits such that this is equated to a data set
digits = data[0: 100]
# Repeating the digits is to create a simple data set in an array
array1 = np.repeat(np.arange(10), 100)
print(array1)
# Within the population binary values indicating the probability of a replication
setRepetition = np.array(np.arange(100) ** 2)
file these 0 up to 99 and here is the data
# The sum of fifths is found piece to be calculated for the measurement low value
q = np.sum(np.arange(100) ** 2)
# Then print the number of rarely be from the sharpe factor on the passing short-term
print(q)
# As this simulates the probability knowledge to make some things
# different elements of an array are forced to breakup onto the last
result = np.cumsum(np.arange(100) ** 2)
# 100 values of values per that you can print the equation of the remainder won on the trial
print(result)
# If binomial distribution is efficient with the algebra of the probability function
# the sum of each integer from 0 to 100 is shown per which is that are calculated as a plot of
# that is here
values = np.arange(0, 100)
print(values)
Tasks of the figures
# The size of the figure in the elements of an array on the data concept
proportion = np.arange(100) * 2
print(proputation)
something. There are a variety of things about each value is plotted per segment
# organization to optional just that data is here mode is function
# using a histogram to monitor the amount of values that are plotted to the other one
plt.hist(proportion, bins = 100)
plt.show()
<jupyter_output>
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8月18日2007年