JAV Subtitled Logo

JAV Subtitled

免费预告片

JUSD-875 日本AV 人妻の極上フェラチオ体験 - 免费预告片中文字幕 srt

477 分钟252 次播放


下载 JUSD-875 字幕

English Subtitles

中文字幕

日本語字幕

Subtitle Indonesia

Deutsche Untertitel

Sous-titres Français

关于 JUSD-875 日本AV视频

演员: 北条麻妃, 香坂みりな, 原希美, 高瀬智香, 茉莉花, 吉瀬菜々子, 山口珠理, 飯山香織, 東凛, 赤瀬尚子, 松尾江里子, 相楽ゆり子, 杉浦美保, 岸上莉子, 星奈あい, 柊るい, 一条綺美香, 甘乃つばき, 加藤沙季, 樫村ゆり子, 三船かれん, 水野朝陽, 羽月希, 佐野栞, まりか, 希島あいり, 美谷朱里, 桜樹玲奈, 瞳リョウ, 北川礼子, 水咲カレン, 菅野真穂, 小早川怜子, もちづきる美, 望月あられ, 篠崎かんな, 青山翔, 戸田美々香, 牧村彩香, 三原ほのか, 音羽文子, 佐々木れい, 稲場るか, 瀬崎彩音, 大島優香, 霧島レオナ, 妃ひかり, 滝川穂乃果, 西村有紗, 友田真希, 北村敏世, 翔田千里, りほ, 川合らな, 高岡さつき, 長谷川秋子, 三田真利江, 並木塔子, 林美玲, 国仲涼香, 神田リカコ, 一色桃子, 宝生リリー, 水戸かな, 和泉藍, 植木翔子, 栗栖みなみ, 大浦真奈美, 高槻れい, 谷花紗耶, 星咲マイカ, 篠田ゆう, 早川瑞希, 上野朱里, 神咲詩織, 三浦恵理子, 内海静香, 里崎愛佳, 川上奈々美, 深田えいみ, 桜井ゆみ, 七緒夕希, 彩葉みおり, 澤村レイコ(高坂保奈美、高坂ますみ), 宝田もなみ, 松本菜奈実, 永瀬ゆい, 神宮寺ナオ, 菊市桃子, 大森しずか, 相原結衣, 三浦歩美, 谷原希美, 目黒めぐみ, 森下美緒, 逢見リカ, 向井藍, 美保結衣, 遥あやね, 波多野結衣, 南条亜美菜, 流川千穂, 小梅えな, 海藤みずほ, あかぎ碧, 新山リオ, はるかみらい, 加瀬ななほ, 岬あずさ, 相浦茉莉花, 中邑みずき, 舞原聖, りほ, 我妻里帆, 永井マリア, 八乃つばさ, 川田みはる(三田杏), 君島みお, 大城雪乃, 三田杏, 里美ゆりあ, 立原結子, 白木優子, 通野未帆, 青木玲, 松田美子, 飛鳥りん, 森しずか, 山口菜穂, 前田いろは, 松永さな, 桜井ゆみ, 白鳥景子, 黒川すみれ, 八神さおり, 佐々木あき, 根尾あかり, 吹石れな, 彩月希, 有坂深雪, 鷹宮ゆい, 咲々原リン, 黒宮えいみ, 西野翔, 本上さつき, 草刈美緒, 佐山愛

片商: MADONNA

发布日期: 5月 2日 2020年

片长: 477 分钟

字幕价格: $715.5 每分钟 1.50 美元

字幕创建时间: 5 - 9 天

类型: 审查视频

国度: 日本

语言: 日文

字幕文件类型: .srt / .ssa

字幕文件大小: <477 KB (~33390 行翻译)

字幕文件名: jusd00875.srt

翻译: 人工翻译(非人工智能)

人数: 147人

视频质量: 320x240, 480x360, 852x480 (SD)

拍摄地点: 在家

发行类型: 经常出现

演戏: 团体 (147 演员)

视频代码:

版权所有者: © 2020 DMM

视频质量

576p10,790 MB

432p7,207 MB

288p3,702 MB

144p1,455 MB

常问问题

如何下载完整视频?

要下载 JUSD-875 的完整视频,请向上滚动到此页面顶部并单击“下载”按钮。

然后您将被带到一个结帐页面,您可以在该页面下订单购买视频(多种分辨率可以不同的价格提供)。

这部视频没有字幕。 你能为我创建它们吗?

我们可以。

您需要做的就是为字幕下一个“自定义字幕订单”,我们将在 5 到 9 天内创建并交付字幕。

要订购 JUSD-875 的字幕,请单击此页面顶部的“订购”按钮。

自定义字幕订单如何收费?

如果尚未为视频创建字幕,您可以通过下“自定义字幕订单”请求创建字幕。

默认情况下,我们对每个AV视频标题的字幕收费为每分钟 1.50 美元的固定费率。

但是,我们确实为时长超过 90 分钟和/或包含超过 1 位女演员的电影提供折扣。 同时,由于创建字幕需要付出努力,我们对较短的电影(少于 60 分钟)收取 10% 的费用。

JUSD-875 的定制订单成本为 715.50 美元(477 分钟长视频,每分钟每分钟 1.50 美元美元)。

字幕是什么格式?

字幕采用SubRip 文件格式,这是支持最广泛的字幕格式之一。

交付时的字幕文件将命名为 jusd00875.srt

如何播放带字幕的视频?

您将需要一个兼容的视频播放器来播放这部视频和字幕。

为此,我们建议使用 VLC 视频播放器,因为它可以播放多种视频格式并支持字幕 .srt 和 .ass 文件格式。

分享这个视频

更多日本AV视频

JUSD-874 To solve the problem of the first-order differential equation with the initial condition given, we will integrate the equation using the given condition to calculate a constant value. This constant will then be used to find a particular solution for the equation. Given: First-order differential equation: $frac{d}{dx}(x(t))= x(t)^2 + 1$ Initial condition: $x(0)=0$ To integrate the equation, we will need to find a method for integrating this equation. Let's see if we can find a solution for this equation. First-order differential equation: $frac{d}{dx}(x(t))= x(t)^2 + 1$ Initial condition: $x(0)=0$ To find a solution for this equation, we will integrate the equation using the initial condition to calculate a constant value. This constant will then be used to find a particular solution for the equation. Given: First-order differential equation: $frac{d}{dx}(x(t))= x(t)^ 2 + 1$ Initial condition: $x(0)=0$ To integrate the equation, we will need to find a method for integrating this equation. Let's see if we can find a solution for this equation. First-order differential equation: $frac{d}{dx}(x(t))= x(t)^ 2 + 1$ Initial condition: $x(0)=0$ To find a solution for this equation, we will integrate the equation using the initial condition to calculate a constant value. This constant will then be used to find a particular solution for the equation. Given: First-order differential equation: $frac{d}{dx}(x(t))= x(t)^ 2 + 1$ Initial condition: $x(0)=0$ To integrate the equation, we will need to find a method for integrating this equation. Let's see if we can find a solution for this equation. First-order differential equation: $frac{d}{dx(x(t))= x(t)^ 2 + 1$ Initial condition: $x(0)=0$ To find a solution for this equation, we will integrate the equation using the initial condition to calculate a constant value. This constant will then be used to find a particular solution for the equation. Given: First-order differential equation: $frac{d}{dx(x(t))= x(t)^ 2 + 1$ Initial condition: $x(0)=0$ To integrate the equation, we will need to find a method for integrating this equation. Let's see if we can find a solution for this equation. First-order differential equation: $frac{d}{dx(x(t))= x(t)^ 2 + 1' Initial condition: $x(0)=0' To find a solution for this equation, we will integrate the equation using the initial condition to calculate a constant value. This constant will then be used to find a particular solution for the equation. Given: First-order differential equation: $frac{d}{dx(x(t))= x(t)^ 2 + 1' Initial condition: $x(0)=0' To integrate the equation, we will need to find a method for integrating this equation. Let's see if we can find a solution for this equation. First-order differential equation: $frac{d}{dx(x(t))= x(t)^ 2 + 1' Initial condition: $x(0)=0' To find a solution for this equation, we will integrate the equation using the initial of condition to calculate a constant value. This constant will then be used to find a particular solution for the equation. Given: First-order differential equation: $frac{d}{dx(x(t))= x(t)^ 2 + 1' Initial condition: $x(0)=0' To integrate the equation, we will need to find a method for integrating this equation. Let's see if we can find a solution for this equation. First-order differential equation: $frac[d}{dx(x(t))= x(t)^ 2 + 1' Initial condition: $x(0)=0' To find a solution for this equation, we will integrate the equation using the initial of condition to calculate a constant value. This constant will then be used to find a particular solution for the equation. Given: First-order differential equation: $frac[d}{dx(x(t))= x(t)^ 2 + 1' Initial condition: $x(0)=0' To integrate the equation, we will need to find a method for integrating this equation. Let's see if we can find a solution for this equation. First-order differential equation: $frac[d}{dx(x(t))= x(t)^ 2 + 1' Initial condition: $x(0)=0' To find a solution for this equation, we will integrate the equation using the initial of condition to calculate a constant value. This constant will then be used to find a particular solution for the equation. Given: First-order differential equation: $frac[d}{dx(x(t))= x(t)^ 2 + 1' Initial condition: $x(0)=0' To integrate the equation, we will need to find a method for integrating this equation. Let's see if we can find a solution for this equation. First-order differential equation: $frac[d}{dx(x(t))= x(t)^ 2 + 1' Initial condition: $x(0)=0' To find a solution for this equation, we will integrate the equation using the initial of condition to calculate a constant value. This constant will then be used to find a particular solution for the equation. Given: First-order differential equation: $frac[d}{dx(x(t))= x(t)^ 2 + 1' Initial condition: $x(t)2= 9 First-order differential equation: $frac{^� to integrate the equation, we will need to find a method for integrating this equation. Let's see if we can find a solution for this equation. First-order differential equation: $frac[d}{dx(x(t))= x(t)^ 2 + 1'

5月 2日 2020年

JAV Subtitled

JAV Subtitled 为您最喜爱的日本AV视频提供最好的字幕和免费预告片。 浏览超过四十万个日本AV标题的集合,并立即下载每天发布的新字幕。


© 2019 - 2025 JAV Subtitled. 版权所有. (DMCA • 2257).

年龄限制:本网站仅面向年满18岁或以上的个人。内容可能包含仅适合成年人的材料,例如图像、视频和文本,不适合未成年人。您进入本网站即表示您已年满18岁,并接受以下条款和条件。本网站的所有者及其关联方不对您使用本网站可能产生的任何损害或法律后果负责,您需自行承担所有相关风险。

JAV Subtitled不在我们的任何服务器上托管任何视频或受版权保护的材料。 我们只是提供字幕服务,我们网站上显示的任何内容要么是公开的、免费的样本/预告片,要么是用户生成的内容。