JAV Subtitled Logo

JAV Subtitled

Free Trailer
PKPT-007 Part 15 - 156 minutesPKPT-007 Part 14 - 147 minutesPKPT-007 Part 13 - 138 minutesPKPT-007 Part 12 - 129 minutesPKPT-007 Part 11 - 120 minutesPKPT-007 Part 10 - 111 minutesPKPT-007 Part 9 - 102 minutesPKPT-007 Part 8 - 93 minutesPKPT-007 Part 7 - 84 minutesPKPT-007 Part 6 - 75 minutesPKPT-007 Part 5 - 66 minutesPKPT-007 Part 4 - 57 minutesPKPT-007 Part 3 - 48 minutesPKPT-007 Part 2 - 39 minutesPKPT-007 Part 1 - 30 minutes

PKPT-007 JAV Alice Hikaesi, an Energetic and Passionate Young Lover - Free Trailer and English Subtitles srt.

139 mins545 views


Download PKPT-007 Subtitles

English Subtitles

中文字幕

日本語字幕

Subtitle Indonesia

Deutsche Untertitel

Sous-titres Français

More Movies by Alice Kisaki

Alice Kisaki 希咲アリス

Alice Kisaki

MDBK-377 Her appearance is innocent, but her true nature is mischievous and bold.

21 Jun 2025

CEMD-698 The full-length uncut collection features renowned actresses in a comprehensive and authentic performance compilation.

7 Jun 2025

MKCK-387 An Exploration of Ethical Boundaries in Complex Fictional Narratives

16 May 2025

MKCK-385 The Ultimate Encyclopedia of World-renowned Spa Bodies: An Exclusive Collection of Therapeutic and Sensual Perfection

25 Apr 2025

MGTD-043 Unwelcome Advances

18 Apr 2025

PPBD-306 Experience Ultimate Pleasure with Delicate Breast Caresses Leading to Ecstatic Release

11 Apr 2025

TOMNVD-010 Enjoying the Elegant Curve and Sensual Body of a Luxuriously Generous Maiden in Intimate Moments

1 Apr 2025

JFB-470 5. (a) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (b) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (c) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (d) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (e) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (f) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (g) We shall first find E[N]. We have E[N流入) = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². and into others (a) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (h) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > based) = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (i) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (j) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (k) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (l) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] ;(1** We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (m) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (n) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (o) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus, the variance of N is given by Var[N] = E[N²] - (E[N])² = 1 / λ². (p) We shall first find E[N]. We have E[N] = ∫[0,∞] P[N > x] dx. Using integration, we obtain E[N] = 1 / λ. We shall next find E[N²]. We have E[N²] = ∫[0,∞] P[N² > x] dx. Using integration, we obtain E[N²] = 2 / λ². Thus,

28 Mar 2025

PKPT-007 Movie Information

Actresses: Alice Kisaki 希咲アリス

Producer: Fuck Group And Fun Friends/Daydreamers

Release Date: 29 Jan, 2022

Movie Length: 139 minutes

Custom Order Pricing: $187.65 $1.35 per minute

Subtitles Creation Time: 5 - 9 days

Type: Censored

Movie Country: Japan

Language: Japanese

Subtitle Format: Downloadable .srt / .ssa file

Subtitles File Size: <139 KB (~9730 translated lines)

Subtitle Filename: pkpt00007.srt

Translation: Human Translated (Non A.I.)

Total Casts: 1 actress

Video Quality & File Size: 320x240, 480x360, 852x480 (SD), 1280x720 (HD), 1920x1080 (HD)

Filming Location: At Home / In Room

Release Type: Regular Appearance

Casting: Solo Actress

JAV ID:

Copyright Owner: © 2022 DMM

Video Quality & File Size

1080p (HD)6,280 MB

720p (HD)4,183 MB

576p3,144 MB

432p2,100 MB

288p1,079 MB

144p424 MB

More Information

How do I download the full video?

To download the full video for PKPT-007, scroll up to the top of this page and click on the 'Download' button.

You will then be brought to a checkout page where you can place your order for the video (multiple resolutions are available at different pricings).

There are no subtitles for this movie. Can you create them for me?

Yes we can.

All you'll need to do is place a "Custom Subtitles Order" for subtitles and we will have them created and delivered within 5 - 9 days.

To place an order for PKPT-007's subtitles, click on the 'Order' button at the top of this page.

How do you charge for custom subtitle orders?

If subtitles have not been created for a video, you can request for them to be created by placing a "Custom Subtitles Order".

By default, we charge a flat rate of USD$1.50 per minute for subtitling each JAV title.

However, we do offer discounts for movies that are longer than 90 minutes and/or include more than 1 actress. At the same time, we charge 10% higher for shorter movies (less than 60 minutes) due to the effort it takes to create the subtitles.

The custom order pricing for PKPT-007 is $187.65 at $1.35 per minute (139 minutes long video).

What format are subtitles in?

Subtitles are in SubRip file format, one of the most widely supported subtitle formats.

The subtitle file upon delivery will be named pkpt00007.srt

How do I play this movie with subtitles?

You will need a compatible movie player to play this movie along with subtitles.

For this, we recommend using the VLC movie player as it allows you to play a very large range of video formats and supports subtitles in .srt and .ass file formats.

JAV Subtitled

JAV Subtitled brings you the best SRT English subtitles and free trailers for your favorite Japanese adult movies. Browse through a collection of over 400,000 titles, and instantly download new subtitles released everyday in .srt file formats.


© 2019 - 2025 JAV Subtitled. All Rights Reserved. (DMCA • 2257).

Age restriction: This website is for individuals 18 years of age or older. The content may contain material intended for mature audiences only, such as images, videos, and text that are not suitable for minors. By accessing this website, you acknowledge that you are at least 18 years old and accept the terms and conditions outlined below. The website owner and its affiliates cannot be held responsible for any harm or legal consequences that may arise from your use of this website, and you assume all associated risks.

JAV Subtitled does not host any videos or copyrighted materials on any of our servers. We are solely a subtitling service, and any content displayed on our website are either publicly available, free samples/trailers, or user generated content.